skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Srinivasan, Sudharshan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There are nearly one hundred parallel and distributed graph processing packages. Selecting the best package for a given problem is difficult; some packages require GPUs, some are optimized for distributed or shared memory, and some require proprietary compilers or perform better on different hardware. Furthermore, performance may vary wildly depending on the graph itself. This complexity makes selecting the optimal implementation manually infeasible. We develop an approach to predict the performance of parallel graph processing using both regression models and binary classification by labeling configurations as either well-performing or not. We demonstrate our approach on six graph processing packages: GraphMat, the Graph500, the Graph Algorithm Platform Benchmark Suite, GraphBIG, Galois, and PowerGraph and on four algorithms: PageRank, single-source shortest paths, triangle counting, and breadth first search. Given a graph, our method can estimate execution time or suggest an implementation and thread count expected to perform well. Our method correctly identifies well-performing configurations in 97% of test cases. 
    more » « less